RL-TR-95-277
Final Technical Report
January 1996

TCB SUBSET DBMS
ARCHITECTURE PROJECT

Infosystems Technology, Inc.

James P. O’Connor; Mohammed S. Hasan, and Mark S. Smith

APFROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

1 9960408 1 2 7 DTIC QUALITY ToseRory

Rome Laboratory
Air Force Materiel Command
Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will be releasable
to the general public, including foreign nations.

RL-TR-95- 277 has been reviewed and is approved for publication.

APPROVED: \?W% o% /jésv

MARY L. DENZ
Project Engineer

FOR THE COMMANDER: % %”“‘M

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory mailing list,
or if the addressee is no longer employed by your organization, please notify Rome Laboratory/
(c3aB), Rome NY 13441. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
| document require that it be returned.

REPORT DOCUMENTATION PAGE | Ry agerovea

cofection of rforration, SgOekrs for recLaing this BLrCN 1 Washington Hesdausrters Servicsa, Orectorats for formation Operstiors snaReparts, 1215 Jeterson
Oovw Highwewy. Sute 1204 Adnggon VA m'.:m.mm:md'ummmpm“mmmn.wmocm
1. AGENCY USE ONLY dLeave Blank) Z‘REPOFH' DATE 3. REPORT TYPE AND DATES COVERED
January 1996 Final ———=
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
C -~ F30602-94-C-0071
TCB SUBSET DBMS ARCHITECTURE PROJECT PE - N/A
PR - R486
A f
8. AUTHOR(S) TA - 01
James P. O'Connor, Mohammed S. Hasan, and Mark S. Smith WU - P1
S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
7. PERFORMING ORGANIZATION NAME (S) REPORT NUMBER

Infosystems Technology, Inc.
6411 Ivy Lane, Suite 306

Greenbelt MD 20770 N/A
Y NAME (S) AND ADDRESSES) 10. SPONSORING/MONITORING
9. SPONSORING/MONITORING AGENC (S) AGENGY REPORT NUMBER

Rome Laboratory/C3AB
525 Brooks Rd
Rome NY 13441-4505 RL-TR-95-277

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Mary L. Denz/C3AB/(315) 330-3241

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13, ABSTRACT (MadLm 200 worcs)

This report documents the results of an effort to investigate a Multilevel

Secure (MLS) Database Management System (DBMS) architecture derived by applying the
concepts of Trusted Computing Base (TCB) subsetting as described in the Trusted
Database Interpretation of the Trusted Computer System Evaluation Criteria (TCSEC)
to a trusted subject MLS DBMS architectire. A TCB subset architecture is a trusted
systems architecture in which the overall system security policy is hierarchically
partitioned and allocated to different parts (subsets) of the system. Each of these
parts implements a reference monitor enforcing the corresponding policy. Each part
is similar to a conventional reference monitor, with the exception that it may use
the resources of the more primitive subsets (lower in the hierarchy) to enforce its
security policy (the most primitive subsets use only the hardware). A subset
architecture provides significant benefits in the areas of assurance and
evaluability. An alternative to a TCB subset DBMS architecture is a "trusted
subject architecture”", wherein the DBMS contains some subjects that are not
completely constrained by the underlying security kernel. 1In this report, the design
and implementation-of a new MLS DBMS architecture that is a hybrid of these two
architectures is presented.

14. SUBJECT TERMS 15 NléHBEROFﬁM!!
Multilevel secure database management system, Trusted subject, 3

Trusted computing base subset architecture

17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION |19 SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

18 PRICE CODE

OF THIS PAGE
UNCLASSTIFIED UNCLASSIFIED UNCLASSIFIED SAR.. —
o P i o

28102

Contents

Introduction

Concepts

2.1 TCBSubsets v v v i i e e e e e e e e e e
2.2 Trusted Subjects
2.3 Relationship Between Subsets and Trusted Subjects

MLS DBMS Architectures
3.1 TCB Subset DBMS Architecture e
3.2 Trusted Subject DBMS Architecture

Proposed Architecture

4.1 Architecture Definition e
4.2 Advantages
4.3 Disadvantages e e

Trusted RUBIX Architecture

5.1 Architecture Definition e
51.1 MACSubset i v i i e e e e
51.2 DACSubset. o i e e e

5.2 Satisfaction of Subset Requirements e e e e
5.2.1 Reference Monitor Requirements
5.2.2 Requirements for Evaluation By Parts

5.3 Architectural Characteristics
531 TCBSIZE . . v v v o e e
5.3.2 Performance e e e e
5.3.3 Resource Utilization oo

Design Issues

Conclusions and Future Research

W w NN

Sy v N

List of Figures

N OO WD e

Adding a Trusted Subject to a Subset Architecture. 4
Abstract Subset Architecture.o L o 7
Trusted RUBIX Subset Architecture. 10
Trusted RUBIX Process Architecture. e e e e e e 11
Trusted RUBIX Domain Isolation Mechanisms. 14
Execution Time vs. Selectivity 16
Ratio of Execution Time o o o o v v v i i i s e 17

ii

1 Introduction

This document presents the results of a U.S. Air Force Rome Laboratory funded research
effort to investigate an MLS DBMS architecture derived by applying the concepts of TCB
subsetting as described in the Trusted Database Interpretation [1] of the Trusted Computer
System Evaluation Criteria (TCSEC) [2] to a trusted subject multilevel secure DBMS ar-
chitecture. A TCB subset architecture is a trusted system architecture in which the overall
system security policy is hierarchically partitioned and allocated to different parts (sub-
sets) of the system[l]. Each of these parts implements a reference monitor enforcing the
corresponding policy. Each part is similar to a conventional reference monitor, with the ex-
ception that, it may use the resources of the more primitive subsets (lower in the hierarchy)
to enforce its security policy (the most primitive subsets use only the hardware). A subset
architecture provides significant benefits in the areas of assurance and evaluability.

In the database security literature, the term “subset architecture” is often used to denote
an architecture where the DBMS is completely constrained by an underlying security kernel.
Such an architecture was first proposed as part of the SeaView effort [3]. In this architecture,
the DBMS runs as one or more untrusted processes on top of a security kernel. This
architecture consists of two subsets. The most primitive subset is the underlying security
kernel, which is responsible for all mandatory access control (MAC) enforcement. The
DBMS forms a second subset which enforces a discretionary access control (DAC) policy
on its own objects. While this architecture is an interesting instance of the class of subset
architectures, it is not the only possible subset architecture. In fact, the idea of TCB subsets
is most powerful when viewed as a general-purpose trusted system design technique.

An alternative to a TCB subset DBMS architecture is a “trusted subject architecture”
where the DBMS contains some subjects that are not completely constrained by the un-
derlying security kernel. A trusted subject is an entity (usually a process) that runs with
special privilege that allows it to bypass the security policy of an underlying reference mon-
itor. Trusted subjects are employed in a system design when the constraints implemented
by the underlying security mechanism make it impossible (or very difficult) to implement
required functionality. Since trusted subjects are not completely constrained by the under-
lying reference monitor, it is crucial that they be carefully analyzed to ensure that they do
not violate the intended security policy.

In this report, we present the design and implementation of a new MLS DBMS archi-
tecture that is a hybrid of these two architectures. The new architecture was derived by
applying the concepts of TCB subsetting to a trusted subject MLS DBMS architecture.
This architecture retains many of the strengths of the trusted subject architecture while
mitigating its weaknesses. The prototype of this architecture was developed by reengineer-
ing the TCB of Trusted RUBIX[4]. Trusted RUBIX is full-functionality SQL2-based MLS
client-server relational DBMS that provides mandatory access control at the tuple level.
The platform for the prototype is the AT&T 3B2 running UNIX System Laboratories’
(USL) UNIX System V Release 4.1 ES (UNIX SVR4.1ES).

Section 2 of this paper presents the concepts of TCB subsets and trusted subjects, and

discusses the relationship between the two. Section 3 discusses MLS DBMS architectures
based on each of these concepts and discusses their advantages and disadvantages. Section 4
presents an MLS DBMS architecture that combines the concepts of TCB subsets and trusted
subjects, and discusses the advantages and disadvantages of this architecture. Section 5
describes the architecture of the prototype system, discusses how it satisfies the requirements
for a subset architecture, and describes its architectural characteristics. Section 6 discusses
design issues. Section 7 presents conclusions and future research.

2 Concepts
2.1 TCB Subsets

In a trusted system based on the concept of TCB subsets, the overall system security policy
is hierarchically partitioned and allocated to different parts (subsets) of the system. Each
of these parts implements a reference monitor enforcing the corresponding policy. Each
part is similar to a conventional reference monitor, with the exception that, it may use
the resources of the more primitive subsets (lower in the hierarchy) to enforce its security
policy (the most primitive subsets use only the hardware). A subset architecture can be
incrementally evaluated, in that each of the parts can be separately evaluated against their
respective policies. The evaluation of a given part depends upon the evaluation of the more
primitive subsets which it uses. Even though the parts can be incrementally evaluated, it
still must then be argued that when composed, parts enforce the original system security
policy. .

The idea of having multiple levels of security kernels, each implementing a security
policy on its own objects, dates back to the design of the UCLA Virtual Machine System
[5]. The current concept of TCB subsets grew out of work on the concept of extensible
TCBs [6] and the first full treatment of this form of the concept was published in {7]. Here,
the basic idea was to generalize the reference monitor concept [8] to support the goal of
incremental evaluation of trusted systems. The Trusted Database Interpretation (TDI) [1]
of the Trusted Computer System Evaluation Criteria (TCSEC) [2] embraced the concept
of hierarchically related subsets as a basis for trusted DBMS development and evaluation.

The TDI formally defines a subset M as the a set of software, firmware, and hardware
(where any of these three could be absent) that mediates the access of a set S of subjects to
a set O of objects on the basis of a stated access control policy P and satisfies the properties:

1. M mediates every access to objects in O by subjects in S;

2. M is tamper resistant; and

3. M is small enough to be subject to analysis and tests, the completeness of which can
be assured.

Furthermore, the TDI specifies a set of conditions that a subset architecture must meet
in order to be eligible for an evaluation by parts. These conditions are:

1. The candidate TCB subsets are identified;
2. The system policy is allocated to the candidate TCB subsets;

3. Each candidate TCB subset M[i] includes all the trusted subjects with respect to its
technical policies P[i];

4. The TCB subset structure is explicitly described;
5. Each TCB subset occupies distinct subset-domains; and

6. The more primitive TCB subsets provide support for the reference validation mecha-
nism arguments for the less primitive TCB subsets.

Any architecture that claims to be a subset architecture must satisfy these conditions. .

2.2 Trusted Subjects

A trusted subject is an entity (usually a process) that runs with special privilege that
allows it to bypass the security policy of an underlying reference monitor!. For example,
UNIX System V Release 4.2 ES allows a subject to be granted a number of privileges,
including: read-up (MACREAD), write-down (MACWRITE), and modify process level
(SETPLEVEL) [9]. Other operating systems provide a more granular privilege mechanism
where processes are only trusted within a range [10].

Trusted subjects are employed in a system design when the constraints implemented by
the underlying security mechanism make it impossible (or very difficult) to implement re-
quired functionality. They may be used as part of the implementation of a multilevel secure
operating system (and hence are evaluated as part of the operating system evaluation),
or they may be added later to support a trusted application (e.g., a guard application).
Since trusted subjects are not completely constrained by the underlying reference monitor,
it is crucial that they be carefully analyzed to ensure that they do not violate the intended

security policy.

2.3 Relationship Between Subsets and Trusted Subjects

The first issue that must be addressed is whether it is possible to apply the concept of TCB
subsets to an architecture utilizing trusted subjects. One way to illustrate that the concepts
of trusted subjects and TCB subsets are compatible, is to start with a valid TCB subset
architecture, add a trusted subject, and argue that the result can be made into a valid (but
different) subset architecture. A subset architecture is valid if it satisfies the six criteria
for a subset architecture, and each subset possesses the three reference monitor properties
required of a subset.

'Even though most discussions of trusted subjects focus on the ability to circumvent mandatory access
control, a process can be trusted with respect to any aspect of the policy implemented by the reference
monitor {e.g., discretionary access control).

M]n] Min-1]

Add Trusted MIK]

Subject (wrt. M1} "] >— Mk-1]
Mk-1]

M(1] M[1]

M(0] MJo]

Figure 1: Adding a Trusted Subject to a Subset Architecture.

Assume that there exists a TCB that is layered into n hierarchical subsets M[0], M[1],
...y M[K], ..., M[n], and is valid by the above definition. Now suppose that we add a trusted
subject to subset M[k] (trusted with respect to subset M[k-1}). This situation is shown
on the left side of Figure 1. As modified, this architecture is not valid because it violates
condition 3. However, we can combine the subsets M[k] and M[k-1] into a single subset that
is allocated the combined policies of the two subsets.? The resulting architecture, which is
shown on'the right side of Figure 1, is a new candidate subset architecture.

It should be apparent that the candidate architecture satisfies the six conditions for
a subset architecture as listed above. The remainder of this section argues that the new
subset (M[k-1]) can satisfy the required reference monitor properties as well. The first
property can always be satisfied because the new subset can use the same mechanisms as
the old M[k] and M(k-1] subsets to ensure that it is not bypassed. The second property
can always be satisfied because the new subset can use the same mechanisms as the old
M[k] and M[k-1] subsets to ensure that it is tamper resistant. The satisfaction of the third
property depends on characteristics of the original subsets that were combined. As noted
in the TCSEC, the third property is currently interpreted to mean that the TCB “must be
of sufficiently simple organization and complexity to be subjected to analysis and tests, the
completeness of which can be assured” [2]. It certainly can be argued that if the original
two subsets satisfied this criterion, and the additional trusted subject satisfied this criterion,
then the new subset would satisfy it. At higher assurance levels there is also the implication
_ that modules that are not protection critical have been excluded from the TCB. A similar
argument could be made that if the original two subsets were in some sense “minimal”
given their respective polices, the combined subset would also be minimal for the combined
policy, provided that the trusted subject itself were minimal.

The above argument demonstrates that, although trusted subjects have a definite impact
on subset architectures, they can not be determined a priori to be incompatible concepts.
The implication is that an MLS DBMS can be implemented using trusted subjects and may
still derive benefit from an application of the concept of TCB subsets.

2In general. a trusted subject introduced in subset M(i], that is trusted with respect to level M[j], i > j,
will require all subsets M[k], i > k > j, to be combined.

3 MLS DBMS Architectures
3.1 TCB Subset DBMS Architecture

The concept of TCB subsets has been applied in the domain of database architectures to
produce a TCB subset DBMS architecture. This architecture was first proposed as part
of the SeaView effort [3]. In this architecture, the DBMS runs as one or more untrusted
processes on top of a security kernel. This architecture consists of two subsets. The most
primitive subset is the underlying security kernel, which is responsible for all mandatory
access control enforcement. The DBMS forms a second subset which enforces a discretionary
access control (DAC) policy on its own objects.

The advantages of this architecture are ease of evaluation and assurance. The ease
of evaluation of this architecture is due to the fact that, since this architecture has no
trusted subjects, the DBMS is prevented from doing anything that would invalidate a
previous evaluation of the underlying security kernel. There is no need to perform any
re-evaluation of the underlying operating system. The mandatory assurance characteristics
of this architecture are derived directly from the mandatory assurance characteristics of the
underlying operating system. For this reason, the mandatory assurance level of the DBMS
should be the same as that for the underlying security kernel.

The disadvantages of this architecture are that it is inflexible, difficult to use, difficult
to implement, and inefficient. The architecture is inflexible because:

1. Polyinstantiation is unavoidable. This is because the presence of similarly named
objects at higher or non-comparable levels cannot be detected. This is true not only
of tuples, but of databases, relations, and schemata.

2. Integrity constraints cannot always be enforced. This is because the enforcement of
certain constraints require the ability to detect the presence of objects at a higher or
non-comparable level or to remove objects at a lower or non-comparable level.3

3. DBMS Trusted subjects cannot be supported. This is because the DBMS itself cannot
circumvent MAC privileges, therefore it cannot offer any such services to its clients.

4. Information cannot be downgraded. This is because downgrading requires a trusted
subject, which is not permitted in a TCB subset DBMS architecture.

The resulting DBMS is difficult to use for the above reasons as well as the fact that database
dumps, restores, and bulk loads must be performed at each level in the security lattice. The
implementation is difficult because:

It can be argued that this and the previous “disadvantage” are actually necessary characteristics of
a secure system (because both failure to support polyinstantiation and complete enforcement of integrity
constraints can introduce covert channels). The issue is that a system based on this architecture cannot give
the DBA the option to trade-off security and data integrity.

t

1. Data must be fragmented. This is because the DBMS must store all multilevel data,
metadata, and log information in the single level objects provided by the security

kernel.

2. Concurrency control and recovery must be performed without global knowledge. Since
the subjects that perform these operations are necessarily single level, they can only
see the portion of the relevant data that they dominate.

3. DBMS processes must be replicated at each security level. Since the DBMS subjects
are necessarily single level, there must be one for each client security level to be

supported.
Finally, the architecture is less efficient because:

1. The amount of I/0 is increased because of data/log fragmentation. This is because
the DBMS subject must read from one file for each level in the security level lattice
that it dominates. This will significantly reduce the effectiveness of buffering.

2. The DBMS must rely on the operating system file management. Database manage-
ment systems frequently implement their own file systems that are optimized for
database access. Since these file systems are necessarily multilevel, they cannot be

implemented using untrusted subjects.

3. Each DBMS process must be duplicated at each security level. As noted above, the
DBMS TCB subset architecture requires the duplication of processes by security level.
This will have a negative impact on performance because of the additional context
switching overhead (and resource consumption).

3.2 Trusted Subject DBMS Architecture

In the trusted subject DBMS architecture, the DBMS includes one or more subjects that
are trusted with respect to the security policy of the underlying operating system. The
composed system (operating system plus application) implements a security policy that is
potentially different from the one originally implemented by the operating system.

The advantages of this architecture are performance, flexibility, ease of implementation,
and ease of use. The primary disadvantages of this architecture are low assurance and eval-
uation difficulty. Both of these disadvantages are a result of the fact that, since the DBMS
is not fully constrained by the underlying operating system TCB, flaws in its implementa-
tion can cause a breach of mandatory security. The difficulty of evaluating such a system is
compounded by that fact that the combination of the trusted subject and the TCB of the
underlying operating system can introduce information flows that cannot be discovered by
performing an analysis of the trusted subject alone. The implication of this is that it is not
sufficient to look at the trusted subject alone when evaluating the security characteristics
of the DBMS. At least some of the evaluation of the underlying operating system must be

repeated.

Application
Programs

Untrusted
DBMS Code

High-Level Policy) M[1]
Layer

Extended TCB
Layer

Operating System
TCB

Figure 2: Abstract Subset Architecture.

4 Proposed Architecture

The trusted subject and TCB subset architectures presented in the previous section are
generally considered to be disjoint, each having its own distinct advantages and disadvan-
tages [11]. This view is not consistent with the idea of TCB subsets as a general-purpose
design technique. As discussed in Section 2.3, there is no technical reason why the concept
of TCB subsets cannot be productively applied within the domain of trusted subject DBMS
architectures. This section presents an MLS DBMS architecture derived by applying the
concept of TCB subsets to a trusted subject DBMS architecture.

4.1 Architecture Definition

Figure 2 shows an abstract MLS DBMS architecture that was derived by applying the
concept of TCB subsets to a trusted subject DBMS architecture. This architecture consists
of two subsets, M[0] and M[1]. The M[0] subset enforces a mandatory access control policy
on DBMS objects (e.g., tuples) and consists of the operating system TCB combined with
the minimal amount of trusted DBMS code required to implement the desired policy. The
M[1] TCB subset is layered upon M[0] and enforces a discretionary access control policy
that is a refinement of the policy enforced by the M[0] TCB. Each of these subsets must be
isolated via a domain isolation mechanism (e.g., protection rings [12]).

This architecture is abstract in the sense that it can describe a wide range of actual
MLS DBMS systems. One important detail that has been omitted s the actual allocation
of DBMS functionality to the subsets. For the M[0] subset, some possibilities include: no
DBMS functionality (the conventional TCB subset case), a simple filter, and significant
DBMS functionality (e.g., access methods and scheduler). For the M[1] subset, some possi-
bilities include: a null subset (i.e., rely on the DAC, if any, provided at the M[0] subset) and
subsets whose functionality is determined by the granularity of the definition of protected
objects in the system’s security policy (e.g., relations, columns, views).

The MI0] subset of this architecture actually consists of two “parts” (in the TDI sense)

that are isolated in separate protection domains. Since one of these parts contains subjects
trusted with respect to the other, these two parts do not qualify for an evaluation by parts.
As noted in the TDI, even though these parts do not qualify for an evaluation by parts, it
is likely that significant savings can be recognized by reusing the results of the evaluation
of the underlying security kernel. The problem encountered here is that there is no theory
that can be used to quantify these savings a priori.

Tt is also worth noting that the M[1] subset (or the M[0] subset for that matter) could
be further subdivided into additional subsets if desired. This would of course depend on a
meaningful decomposition of the security policy and the availability of the required domain
isolation mechanisms.

The remainder of the paper will focus on an instance of the above architecture in which
the extended TCB layer includes the minimal DBMS functionality required to retain the
significant advantages of the trusted subject architecture as discussed in 3.2.

4.2 Advantages

The proposed architecture retains the significant advantages of the trusted subject DBMS
architecture while mitigating its disadvantages. The advantages are retained through the
judicious use of trusted subjects (e.g., to avoid data fragmentation). The disadvantages
are mitigated by isolating all DBMS code that requirés mandatory privilege to the lowest
level subset. The result is a system that offers significantly higher assurance for mandatory
access control and is more evaluatable than a similar system with a monolithic TCB. The
assurance advantages are a result of the fact that:

e The amount of code that can cause a violation of MAC is significantly decreased. The
amount of DBMS code in the M[0] subset is significantly less than that in the TCB as
a whole and only subjects in this subset can run with special MAC privileges. Since
subsets must satisfy the isolation and non-bypassability requirements for a reference
validation mechanism, these properties guarantee that only code in the MJ0] subset
can cause a violation of MAC.

o The effectiveness of assurance techniques is increased. Assurance techniques are more
effectively applied at a lower level of abstraction. Since assurance techniques must be
applied to each subset, the TCB subsets approach forces you to apply these techniques
more directly to the portions of the system responsible for MAC enforcement (viz.,
the M[0] subset). Additionally, if you subscribe to the notion of balanced assurance
[13], this approach has the effect of focusing your assurance efforts where they will
have the most impact.

The proposed architecture is easier to evaluate because:

e The scope of global analysis is reduced. Developing a system using trusted subjects
requires that certain global analysis be performed on the combined underlying TCB
and the DBMS TCB (e.g., covert channel analysis). If the DBMS TCB has a multi-
subset TCB, only the M[0] TCB must be considered in these global analyses.

8

o The evaluation task can be partitioned. One of the primary benefits of the TCB subsets
approach is the ability to divide a complex system into parts and evaluate the parts
incrementally. This approach makes the evaluation of a complex TCB more tractable.

o The re-assessment of modified or ported systems is simplified. A TCB subset archi-
tecture has the characteristic that the evaluation impact of certain changes is isolated
to the subset in which they occur. This can result in significant savings in the area of
re-assessment.

o Subsets can be evaluated to different assurance levels. This architecture has the char-
acteristic that the different subsets can be evaluated to different assurance levels. That
is, the M[0] subset could be evaluated to a relatively high level (e.g., B3 or A1) while
the M[1] subset could be evaluated at a lower level (e.g., C2).%

In addition to the assurance and evaluation benefits, applying the concept of TCB
subsets to a trusted subject architecture permits a vendor to support a family of MLS
DBMS products without duplicating evaluation effort. A vendor could support an entire
product line (e.g., with products supporting different DAC policies) with the basic M[0]
TCB at its core. Since a subset architecture allows incremental evaluation, the underlying
M[0] TCB need only be evaluated once for the entire product line.

4.3 Disadvantages

The application of the concept of TCB subsets to trusted subject DBMS architectures
has some disadvantages as well. Specifically, the proposed architecture has the following
disadvantages:

o Implementation difficulty associated with multiple protection domains. The architec-
ture presented above will require at least four hierarchical protection domains: one
for the operating system, one for the extended TCB layer, one for the M[1] subset,
and one to protect the integrity of the untrusted DBMS code. These domains can be
provided through a variety of mechanisms and each domain need not use the same
mechanism.

e Performance overhead associated with multiple protection domains. As noted above,
this architecture requires at least four hierarchical protection domains. Crossing do-
main boundaries is likely to have a negative impact on DBMS performance.

o Reduced Flezibility. This reduction in flexibility occurs because the M[1] subset cannot
violate policy of the M[0] subset even in cases where it would be desirable. For
example, it would not be possible to support trusted stored SQL procedures in a

4Current evaluation practice is to require all subsets to be evaluated at a uniform assurance level. There
is, however, no technical reason to require a uniform assurance level provided that a given subset does not
depend upon a less assured subset.

Untrusted
RUBIX Code

Trusted RUBIX
SQL Engine] M1}

Trusted RUBIX
Kernel

UNIX SV4.1ES
TCB

Figure 3: Trusted RUBIX Subset Architecture.

DBMS in which SQL is outside of the mandatory subset. Exactly how much flexibility
is lost is determined by what DBMS functionality is placed in the M([0] subset.

These disadvantages are significantly less that those realized in the conventional TCB
subset DBMS architecture.

5 Trusted RUBIX Architecture

5.1 Architecture Definition

The Trusted RUBIX TCB architecture is shown in Figure 3 and consists of two subsets:
a MAC subset (M[0]), which is responsible for implementing a mandatory security policy,
and a DAC subset (M[1]) which is responsible for implementing the discretionary security

policy.

5.1.1 MAC Subset

The MAC subset consists of the operating system kernel and the Trusted RUBIX kernel
which runs as a trusted subject on the underlying operating system. The policy implemented
by the MAC subset is a Bell and LaPadula [14] with databases, relations, and tuples as
objects. The DBMS functions implemented in the MAG subset are:

¢ File Management.
e Buffer Management.

e B-Tree Management.

Relation Management.

Transaction Management.

e Audit of MAC operations.

10

Client
Machine

Server
Machine

Figure 4: Trusted RUBIX Process Architecture.

The architecture of the MAC subset® is based on the concept of a protected subsystem
[15]. All MAC protected data are stored in one or more volumes, which are single-level
operating system objects. To support fine-grained multilevel objects (viz., tuples), labels
are attached to individual database items within each operating system object. Note that
these labels are DBMS labels and not operating system labels—the operating system views
these labels strictly as data and attaches no security significance to them. The DBMS is
trusted to properly associate and maintain the label of each item and to correctly interpret
those labels so that, in cooperation with the operating system kernel, the security policy
can be correctly enforced.

The Trusted RUBIX portion of the MAC subset is implemented as a separate operating
system process as shown in Figure 4. The resources protected by the MAC subset are pro-
tected from external access by labeling them with the reserved security level USER_RUBIX
(an alias for user:rubix). Processes in the MAC subset set their process level to this security
level on invocation which allows them to access the protected resources. To do this, these
processes must be given the UNIX SETPLEVEL (set process level) privilege. This privilege
is explicitly acquired immediately before the lvlproc() system call, and released immediately
after the call completes.® There are two notable characteristics of the USER_RUBIX level.

SFor convenience, we will use the term “MAC subset” to refer to the Trusted RUBIX kernel portion of
the M[0] subset, although technically the M[0] subset consists of the Trusted RUBIX kernel, the underlying
operating system kernel, and the hardware.

6This technique is known as privilege bracketing and is employed throughout the implementation. The
motivation for privilege bracketing is to minimize the execution time during which a trusted process holds
a privilege, thereby supporting the least privilege principle within the DBMS TCB.

11

First, it includes the category rubiz, which is reserved for subjects and objects in the MAC
subset. Since processes outside of the MAC subset cannot have the rubix category in their
label, they are prevented from directly accessing the MAC subset subjects and objects.
Second, it does not contain the category login, which is part of the labels of all untrusted
UNIX subjects and objects. Since MAC subset subjects do not have the login category
in their level, they are prevented from accessing UNIX subjects and objects. Thus, the
design of Trusted RUBIX uses the underlying UNIX mandatory access control mechanisms
to isolate M[0] subjects and objects from UNIX subjects and objects.

The executables that make up the MAC subset are MAC protected from unauthorized
modification by labeling them with the hierarchical level USER_PUBLIC, which is dom-
inated by the-level of all untrusted processes. The *-property enforced by the operating
system thereby protects these programs from unauthorized modification. In addition, all
MAC subset programs are installed with appropriate UNIX DAC permissions that prevent
unauthorized access.

Since the MAC subset is implemented as a separate process its interface is an inter-
process communication (IPC) interface. Conceptually, this interface consists of a set of
procedures. From a client’s point of view, all that is necessary to access the services of the
MAC subset is to link to the library containing these procedures. These procedures are
implemented as a form of remote procedure call. There are two versions of each procedure:
a client-side procedure that runs in the DAC subset domain and a server-side procedure
that runs in the MAC subset domain. Each client-side call to an interface function causes a
peer function to be executed in the MAC subset domain. When an initialization routine is
called, the server (rxkernel) process is invoked, and a UNIX pipe is established between the
client and server process for synchronous communication. When a program calls one of the
client-side access functions, the arguments to the call are collected and passed, along with
a procedure identifier to the server side. The client procedure then blocks, and waits for a
response. On the server side, a dispatcher function examines the procedure identifier and
calls the appropriate server-side procedure with the communicated arguments. The server-
side procedure validates its arguments, and then performs its function. When this call
returns, the dispatcher function sends back any return values to the client procedure which
then returns like a normal procedure call. The dispatcher function then blocks, awaiting
the next request. The communication channel is brought down by a termination routine.

5.1.2 DAC Subset

The DAC subset consists of the Trusted RUBIX SQL engine. This subset depends upon
on the MAC subset and implements a discretionary policy that is a further restriction
of the policy enforced by the MAC subset. The DAC subset implements a DAC policy
on databases, schemata, relations, views, indexes, and columns. The DBMS functions

implemented in the DAC subset are:
e Query Parsing.

e Query Optimization.

12

Execution of Query Plans.

Join Algorithms, Sort Algorithms, Group-By, etc.

Integrity Constraints.

View Management.

Index Management.

Audit of DAC objects.

The architecture of the DAC subset is also based on the concept of a protected subsys-
tem. Similar to the MAC subset, the DAC subset is implemented as a separate process.
The DAC subset protects its resources using the underlying trusted UNIX DAC mechanism.
All DAC subset resources (including database volumes) are protected from external access
by making them accessible only to subjects in the reserved UNIX group rubixTP. Once
these protections are in place, the underlying operating system will not permit access to
the resources unless the the effective group-id of the accessing process is rubixTP. Untrusted
processes cannot have this group-id because rubixTP is a reserved group with no members.
The UNIX setgid (set group identifier) mechanism is used to set the effective group-id of
the DAC subset process to rubixTP upon invocation. This permits the process access to
the protected resources. Figure 5 summarizes the mechanisms that are used to insure the
non-bypassability of the two subsets.

The DAC subset subset uses the same mechanism as the MAC subset to protect its
executables from tampering. The interface to the DAC subset is an IPC interface similar
to that used in the MAC subset.

5.2 Satisfaction of Subset Requirements
5.2.1 Reference Mo_nitor Requirements

Each TCB subset must satisfy the three reference monitor requirements that were listed in
Section 2.1. The first requirement states that the reference monitor cannot be bypassed,
that is, that subjects external to the subset cannot access protected resources without having
that access mediated by the subset. This requirement is satisfied using different mechanisms
for the MAC and DAC subset. The MAC subset prevents external subjects from accessing
its data by labeling them at the level USER_RUBIX. The DAC subset prevents external
subjects from accessing its data by storing them such that only members of the reserved
group rubixTP can access them. Since only processes in the DAC subset are permitted
membership in this group, this prevents external subjects from accessing these data.

The second requirement for a reference monitor is that it is tamper resistant. Both
the MAC and DAC subset use the same mechanisms to protect themselves. Since MAC
and DAC subjects run as separate processes, they are protected from tampering via the
underlying operating system’s process isolation mechanism. The MAC subset processes

13

Setgid(rubixTP)

Setplevel(USER.RUBIX)

direct read/write access
from non-TCB subjects
not allowed

MAC Domain
[objects labeled at
USER_RUBIX]

DAC Domain
[objects only accessible by
group rubixTP]

Figure 5: Trusted RUBIX Domain Isolation Mechanisms.

have an extra measure of protection because they run at the level USER_RUBIX and are

therefore further isolated from untrusted processes.

The third requirement for a reference monitor is that it is small enough to be subject to
analysis and tests, the completeness of which can be assured. To satisfy this requirement,
the Trusted RUBIX MAC and DAC subsets have been designed to be modular and small
enough so that correctness may be established. The TCB subset approach allows a divide
and conquer approach to be used in establishing the correctness of the composite Trusted

RUBIX TCB.

5.2.2 Requirements for Evaluation By Parts

This section describes how the Trusted RUBIX TCB architecture satisfies the conditions
for an evaluation by parts as specified in 2.1.

o The candidate TCB subsets are identified. The two subsets that comprise the Trusted
RUBIX TCB are shown in Figure 3. The top level specifications for these subsets are

contained in [16].

e The system policy is allocated to the candidate TCB subsets. The Trusted RUBIX
security policy is described in [17]. This policy is layered into a MAC and DAC
portions, which are allocated to the MAC (M[0]) and DAC (M[1]) subsets, respectively.

14

e Each candidate TCB subset M[i] includes all the trusted subjects with respect to its
technical policies P[i]. The only trusted subjects in the architecture are those in the
Trusted RUBIX Kernel that are trusted with respect to the underlying operating
system. Since the Trusted RUBIX Kernel and operating system are part of the same
subset, this condition is met.

e The TCB subset structure is explicitly described. The subset structure is shown in
Figure 3. It is a strictly hierarchical structure with M[1] depending on M[0].

o Each TCB subset occupies distinct subset-domains. The domain isolation mechanism
used by the two subsets was described in Sections 5.1.1 and 5.1.2 and illustrated in

Figure 5.

e The more primitive TCB subsets provide support for the reference validation mech-
anism (RVM) arguments for the less primitive TCB subsets. Section 5.1.2 discusses
how the M[1] subset uses the services of M[0] to support its reference validation mech-
anism. Furthermore, even though the Trusted RUBIX Kernel is not a separate subset,
it uses the services of the UNIX SVR4.1ES operating system to support its reference
validation mechanism.

5.3 Architectural Characteristics

5.3.1 TCB Size

As shown in Figure 3, Trusted RUBIX can be viewed as consisting of three major com-
ponents: the Trusted RUBIX Kernel, the SQL Engine, and Untrusted Code. The Trusted
RUBIX Kernel consists of 20K lines of code, the SQL Engine consists of 58K lines of C
code, and there are 16K lines of untrusted code. All of these numbers are source lines of
C code excluding comments. It is worth noting that the number of lines of code that run
with MAC privilege has been reduced by 73 percent. '

5.3.2 Performance

It was anticipated that the subset TCB architecture would exhibit degraded performance
when compared with the monolithic TCB architecture. The primary reason degraded per-
formance was anticipated is that each fetch of a tuple requires a context switch between the
MAC and DAC subsets. A secondary reason degraded performance was anticipated was
that data must be serialized and copied across the interface for each tuple accessed.

To get a measure of relative performance, we ran a benchmark on two different versions
of Trusted RUBIX. These two versions differ in how they were linked. The first version was
linked with a monolithic TCB (i.e., both subsets in the same address space). In this version
the interface between the DAC and MAC subsets was a procedure call interface. The second
version was linked with a subset TCB (i.e., the MAC and DAC subsets in different address
spaces). In this version, the interface between the DAC and MAC subsets was a UNIX

pipe.

15

The benchmark runs against a subset of the database specified in the Wisconsin Bench-
mark. The database consists of one table (THOUSKTUOL1) containing 100K tuples. This
table contains two integer columns: uniquelD and unique2D. The uniquelD column is the
primary key, and contains values that monotonically increase from 1. The non-key column
unique?2D also contains values that range from 1 to the cardinality of the table, but these
values are randomly distributed.

The query used is of the form:

SELECT uniquelD
FROM THOUSKTUP1
WHERE uniqueID < CONSTANT

This query selects different numbers of tuples from the beginning of the relation de-
pending on the value of CONSTANT. For example, the selection predicate “uniquelD <
10007 selects the first 1000 tuples of the relation, in a contiguous sequence. Varying the
constant allows the number of tuples selected to be controlled. This allows us to compare
the impact of selectivity on the two architectures.

Figure 6 shows the impact of selectivity on execution time. This diagram shows that
as the selectivity of the query increases, so does the difference in execution time. This is
due to the fact that the performance penalty in the subset architecture is due to the cost of
transferring tuples across the subset boundary, and this only occurs if the tuple is selected. -

Execution Time: Table Size 100K

2500 T T T l
Subset
Mo +
2000 - -
1500 F _
i
Seconds +
1000 F Lt .
+
LT
500 -]
+
+
O - { ! { 1
0o 20 40 60 80 100

% Tuples Selected
Figure 6: Execution Time vs. Selectivity

Figure 7 shows the ratio of the execution time for monolithic and subset TCBs against

16

the selectivity (% tuples selected). The formula for the ratio is

time for subset TCB(seconds)
time for monolithic TCB(seconds)

ratio = (1) x 100

Ratio of Execution Time for Subset and Monolithic TCB
100 T i T T

% ratio

0 | 1 | |
0 20 40 60 80 100
% Tuples Selected

Figure 7: Ratio of Execution Time

This ratio gives the difference in execution time as a percentage of the execution time for
the monolithic TCB. For example, when the selectivity is 40% for table size 100K, subset
TCB takes more time, and the difference is 75% of the time taken by the monolithic TCB.
This ratio starts out at 35% when a relatively small number of tuples is selected. This will
be the cost of the subset architecture for most queries. As the number of tuples returned
increases, this ratio rises. As the number of tuples reaches 10-15K the ratio stablizes at
around 60-75%. This is the point at which the cost of retrieving tuples dominates all other
costs.

There are a number of performance enhancements that we could incorporate into the
design that we believe would significantly improve performance. These are:

o Multi-record return. Currently the domain boundary between the DAC and MAC
subset is crossed for every tuple returned. Each of these domain crossings necessarily
causes a context switch at the operating system level. If we modify the interface so
that tuples are prefetched so that multiple tuples are transferred on a single context
switch, the number of context switches can be reduced drastically. This is significant
because we believe that most of the time being lost in the new architecture is a result
of context switches. ‘

17

o Streamlined record structure. Another possible optimization is to streamline the struc-
ture used to pass tuples across the MAC/DAC interface. The current structure in-
cludes both the tuple data and metadata. In many cases the meta data is significantly
larger than the actual tuple data. All of this information must be copied across the
interface for each tuple accessed. Separating the metadata from the tuple data could
result in a significant reduction in the amount of time spent copying data.

e More efficient IPC mechanism. The current implementation uses a UNIX pipe for
the interface between the MAC and DAC TCBs. Changing to a more efficient IPC
mechanism (e.g., shared memory) could also improve performance. Before this change
can be made a number of issues related to the granularity of protection on UNIX IPC

objects must be resolved.

5.3.3 Resource Utilization

The subset architecture version of Trusted RUBIX requires additional resources over those
required in the monolithic TCB version. This increased resource utilization is the result of
the fact that the subset version uses the UNIX SV4.2ES process isolation to isolate the two
subsets. The difference is that in the subset version, there are two UNIX processes for each
instance of the server rather than one. The additional resources required are the memory
needed to store the additional process context, the processor usage required for the context
switch between the two processes, the processor usage required to move data between the
two processes, the disk space needed to swap out the processes, and the disk space needed
to store the separate executables.

6 Design Issues

The major design issues that were faced in re-engineering the TCB architecture of Trusted
RUBIX were:

e The location of the division between the two subsets. There were four primary factors
that affected this decision. The first factor was the design of the monolithic TCB. The
second factor was the partitioning of the security policy. The combination of these
first two factors suggested a natural point at which to partition the system. The third
factor was a desire to minimize the size of the MAC subset. The fourth factor was the
goal to minimize the impact on the performance and flexibility of the architecture.
The final location of the division was arrived at by starting at the position suggested
by the first two factors, and then moving it down until the tradeoff of the third and

fourth factors caused us to stop.

e The mechanism to be used to support subset hierarchical domains. The domain iso-
lation approach used in the architecture is described in Section 5.1.1. The major

18

7

factor in choosing the approach we did was the support provided by the under-
lying secure operating system. On a different platform, a different domain isolation
mechanism would probably be used (e.g., protection rings [12]).

The mechanism to be used for cross-domain communication. Given the domain iso-
lation mechanism that was selected, there were a number of approaches that could
be used for cross-domain communication (e.g., UNIX pipes, shared memory, message
queues). UNIX pipes were selected because they were the only IPC mechanism that
could be exclusively shared between two processes—the others were protected at the
granularity of the user/group. The rationale for this was that it would be easier to
argue the correctness of an IPC interface that was guaranteed to have a fixed pair of
communicants.

The storage of temporary results. In answering certain types of queries, Trusted RU-
BIX needs to store temporary results in relations. The problem that occurs is that
normal MAC rules require labels on these temporary results to float up to the level of
the subject. This will result in overclassification of the result. For example, suppose
a secret subject does a SELECT on a relation containing only unclassified tuples. In
the result, the tuples will all be labeled unclassified. However, if the user requests
that the result be sorted, then a temporary relation must be created, and all tuples
written to that relation will be labeled at the level of the subject. The result is that
after the sort, all the tuples will be labeled secret. To avoid this problem, tuples
written into temporary relations can be labeled at a user specified level that is strictly
dominated by the level of the subject. This policy is safe because temporary relations
are available only to the current process, and are destroyed upon close. The only
subject that can possibly access a temporary relation is the subject that created it.
This policy underscores the advisory nature of tuple level labels.

The replication of audit functionality. In the monolithic TCB version of Trusted
RUBIX, a single audit mechanism was used. In the subset version, both subsets need
to do audit, but you need to ensure that the DAC TCB cannot interfere with the
MAC TCB auditing. The solution that we used was that both subsets used similar
mechanisms to write their audit records to the operating system audit trail. Since
both can only add to the audit trail, the integrity of the audit trail is guaranteed.
The mechanism for storing audit criteria for the two TCBs is independent.

Conclusions and Future Research

The document described the results of reengineering the Trusted RUBIX TCB architecture
to incorporate the concepts of TCB subsetting as described in the Trusted Database In-
terpretation of the Trusted Computer System Evaluation Criteria (TCSEC). The following
are the major lessons learned during this effort:

19

e A DBMS architecture that combines the concepts of trusted subjects and TCB subsets
is technically feasible. This report described an architecture, with separate MAC and
DAC subsets, where the MAC subset consists of the underlying operating system
TCB, plus a layer of privileged DBMS code.

e The TCB subsetting approach can be used to significantly reduce the amount of code
that requires MAC privilege in a Trusted DBMS. The architecture developed in this
effort reduced the amount of code that runs with privilege by over 70 percent.

e The TCB subsetting approach used in this effort simplifies security analysis and there-
fore increases assurance. There are two primary reasons for this simplification. First,
the interface to the MAC TCB is very simple and therefore the specification of the
security semantics and the mapping to the formal model is simplified. This mapping
is further simplified because the MAC policy itself is simple. Second, certain analyses
need only be applied to subsets that implement a MAC policy (e.g., covert channel
analysis). Since only the MAC subset implements a MAC policy, the amount of code
that needs to be analyzed to establish these properties is substantially reduced.

e This effort substantiated the expectation that a subset architecture would incur in
a performance and resource utilization penalty. Based on our benchmarks and the
optimizations that are open to us, we believe that these degradations do not severely
impact the viability of the architecture. It should also be noted that if the architecture
was ported to an operating system that supported a more efficient domain isolation
mechanism (e.g., protection rings [12]), the performance and resource utilization costs

could be significantly reduced.

There are a number of directions in which this work can be extended. The first is per-
formance engineering. As noted in Section 5.3.2, there are a number of potential design
modifications that could significantly improve performance. A second area of future work is
further minimization of the Trusted RUBIX kernel. As noted in Section 6, kernel minimiza-
tion must be carefully weighed against other design goals (e.g., performance, flexibility).
A final area of future research is in the area of DAC policy. The TCB subset architecture
allows Trusted RUBIX to potentially support multiple DAC policies without impacting
the MAC subset. Additional work could be done to specify and prototype different DAC
mechanisms for Trusted RUBIX (e.g., assured DAC, role based DAC).

References

[1] National Computer Security Center. Trusted database interpretation of the trusted
computer system evaluation criteria. Technical Report NCSC-TG-021, National Com-

puter Security Center, April 1991.

[2] Department of Defense. Department of Defense trusted computer system evaluation
criteria. DOD Standard 5200.28-STD, Department of Defense, December 1985.

20

(3]

[4]

[5]

(1]

[12]

[13]

(14]

[15]

[16]

Teresa F. Lunt and Peter K. Boucher. The SeaView prototype: project summary. In
Proceedings of the 17th National Computer Security Conference, Baltimore, Maryland,
October 1994.

J. P. O’Connor. Trusted RUBIX: A multilevel secure client-server DBMS. In Proceed-
ings of the Eigth Annual IFIP Working Group 11.8 Working Conference on Database
Security, August 1994.

G. J. Popek and C. S. Kline. A verifiable protection system. Proceedings of the Inter-
national Conference on Reliable Software, pages 294-304, 1975.

M. Schaefer and R. R. Schell. Toward an understanding of extensible architectures for
evaluated trusted computer system products. Proceedings of the 1984 Symposium on
Security and Privacy, pages 41-49, 1984.

W. Shockley and R. R. Schell. TCB subsets for incremental evaluation. Proceedings of
the Third Aerospace Computer Security Conference, December 1987.

J. P. Anderson. Computer security technology planning study. Technical Report ESD-
TR-73-51 (AD-758206), J. P. Anderson Co., October 1972.

Unix System Laboratories. System V Release 4.1 ES Network User’s and Administra-
tor’s Guide, 1991.

R. R. Schell, T. F. Tao, and M. Heckman. Designing the Gemsos security kernel for
security and performance. Proceedings of the 8th National Computer Security Confer-
ence, 1985.

W. Timothy Polk and Lawrence E. Bassham III. Security issues in the database lan-
guage SQL. NIST Special Publication 800-8, National Institute of Standards and
Technology, August 1993.

M. D. Schroeder and J. H. Saltzer. A hardware architecture for implementing protection
rings. Communications of the ACM, 15(3):157-170, March 1972.

T. Lunt, D. Denning, R. Schell, M. Heckman, and W. Shockley. Element-level classi-
fication with Al assurance. Computers and Society, August 1988.

D. Bell and L. LaPadula. Secure computer system: Unified exposition and Multics
interpretation. Technical Report MTR-2997, MITRE Corporation, July 1975.

J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems.
Proceedings of the IEEE, 63(9), September 1975.

Infosystems Technology, Inc. TCB subset DBMS architecture project: Design docu-
ment. Technical Report TR-9403-00-01, Infosystems Technology, Inc., December 1994.

21

[17] Infosystems Technology, Inc. Trusted RUBIX formal model. Internal technical report,
Infosystems Technology, Inc., July 1994.

22

«U.S. GOVERNMENT PRINTING OFFICE: 1996/710-126/20117

MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab: '

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

¢. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

